


PREPARATION OF UNSYMMETRICALLY
SUBSTITUTED 2,4,8,10-TETRAOXASPIRO-
[5.5]UNDECANES BY AN EXCHANGE REACTION

D. L. Rakhmankulov, R. S. Musavirov,
and E. A. Kantor

UDC 547.841:543.422.4

We used an exchange reaction for the synthesis of unsymmetrically substituted 2,3,8,10-tetraoxaspiro-[5.5]undecanes, which, up until now, have been obtained only as a result of addition to the double bond of 3,9-divinyl-substituted compounds [1].

The reaction was carried out for 5-10 h in sulfolane or toluene with a starting reagent molar ratio of 1:1 at 100° in the presence of $\text{BF}_3 \cdot \text{O}(\text{C}_2\text{H}_5)_2$ or H_2SO_4 .

Compound I had bp 105° (8 mm), d_4^{20} 1.1089, and n_D^{20} 1.4526. Compound II had bp 130° (8 mm), d_4^{20} 1.0950, and n_D^{20} 1.4620. Compound III had bp 120° (8 mm), d_4^{20} 1.0952, and n_D^{20} 1.4585. The results of elementary analysis and the molecular weights found by mass spectrometry were in agreement with the calculated values.

The IR spectra of the compounds contained intense bands at 1010-1200 cm^{-1} , which constitute evidence for the presence of a cyclic acetal structure.

Ufim Petroleum Institute. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 856-857, June, 1976. Original article submitted December 15, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$7.50.